= BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to
Performance Modeling

Charlene Yang, Thorsten Kurth

Application Performance Group, NERSC
cjyang@lbl.gov

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
5 P L

BERKELEY LAB

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: " (GB/s)
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)

_
#FP ops o Peak GFlop/s
Time _(#FP ops / #Bytes) * Peak GB/s

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

CPU

= However, finite locality (reuse) and (computs, flopfs)
bandwidth limit performance. | oRAM Bandwidh
= Assume: | B2
* |dealized processor/caches DRAM
+ Cold start (data in DRAM) (data, GB)
/‘
Peak GFlop/s
GFlop/s = min=<
_Al * Peak GB/s
Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)
4 Gl

BERKELEY LAB

(DRAM) Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

= Log-log scale makes it easy to Peak Flop/s /
doodle, extrapolate performance |
along Moore's Law, efc...

= Kernels with Al less than machine
balance are ultimately DRAM
bound (we’ll refine this later...)

Attainable Flop/s

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
* Unlikely to improve é‘
T
9o
O
s
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;i<N;i++){
z[1] = X[1] + alpha*Y[1];
}
| _ 0.083
* 2 flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
« Al =0.083 flops per byte == Memory bound

— A

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

. : A
coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
« Al =0.44 flops per byte == memory bound, E . Gflop/s < Al * DRAM GB/s
but 5x the flop rate 'cgs |
#pragma omp parallel for T :
for(k=1;k<dim+1;k++){ < | 7-point
for(j=1;j<dim+1;j++){ l .
For(i=1;i<dimsl;i+H){ , Stencll
new[k][jI[i] = -6.0%o1d[k 1[j 1[i 1 |
oldfk 1[j J1[i-1] ! S
T 0083 o044
old[k 1[j+11[i Arithmetic Intensity (Flop:Byte)

old[k-1]1[7 1I[1
old[k+1][3 1I[1

— A

BERKELEY LAB

Hierarchical Roofline

= Real processors have multiple levels of
memory
 Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
 DDR (main memory)
NVRAM (non-volatile memory)

= Applications can have locality in each
level

= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

= A
; P L

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although a loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM) .. -% DDR Bound
= DDR AI"BW <
. ... performance is bound by the < MICORAM AI'BW
minimum

- A
0 P L

BERKELEY LAB

General Strategy Guide

= Broadly speaking, there are three

. . 0

approaches to improving

performance: Peak Flop/s
5
L
[0
I
Is
Z

10

General Strategy Guide

= Broadly speaking, there are three

approaches to improving I
pe rformance: Peak Flop/s
= Maximize in-core performance 8
(e.g. get compiler to vectorize) e
3
.g
Z
1 oryf

BERKELEY LAB

General Strategy Guide

= Broadly speaking, there are three
approaches to improving
pe rformance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware allocation)

Attainable Flop/s

12

General Strategy Guide

= Broadly speaking, there are three

: . 0
approaches to improving
pe rformance: Peak Flop/s
= Maximize in-core performance 8
(e.g. get compiler to vectorize) P
= Maximize memory bandwidth £ <
(e.g. NUMA-aware allocation) < 2
- . &
= Minimize data movement M
(increase Al) Arithmetic Intensity (Flop:Byte) g

13

2P HSW

KNL

GFLOP/s

GFLOP/s

Initial Roofline Analysis of NESAP Codes

MFDn

10000
1000
«===Roofline Model
100 = >wo/FMA
. il 1RHS
10 \ 4RHS
¢ 8 RHS
1 T T 1
0.01 0.1 1 10
Arithmetic Intensity (FLOP/byte)
10000
1000
«===Roofline Model
100 = *wo/FMA
ikl 1 RHS
10 \ 4RHS
¢ 8 RHS
1 T T 1
0.01 0.1 1 10

Arithmetic Intensity (FLOP/byte)

10000

1000

100

GFLOP/s

10

1

10000

1000

GFLOP/s

EMGeo

e==Roofline Model

= *wo/FMA

i Original

A SELL

¢ SB

4 SELL+SB

© NRHS+SELL+SB

0.1 1 10
Arithmetic Intensity (FLOP/byte)

e==Roofline Model

= *wo/FMA

i Original

A SELL

¢ SB

4 SELL+SB

© NRHS+SELL+SB

0.1 1 10
Arithmetic Intensity (FLOP/byte)

14

GFLOP/s

GFLOP/s

10000

1000

100

10

1

10000

1000

100

10

1

PICSAR

«e==Roofline Model

= =wo/FMA

i Original

» w/Tiling
¢ w/Tiling+Vect

0.1 1 10
Arithmetic Intensity (FLOP/byte)

«e==Roofline Model

= =wo/FMA

i Original

\J . w/Tiling

¢ w/Tiling+Vect

0.1 1 10
Arithmetic Intensity (FLOP/byte)

>

b
frrereeer |

BERKELEY LAB

To construct a RL, we need tools...

= Use tools known/observed to work on NERSC's T —
Cori (KNL, HSW)...

 Used Intel SDE (Pin binary instrumentation + W MEASURING ARITHMETIC INTENSITY

» My NERSC
» Getting Started Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the

L]
» Connecting to NERSC amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte
» Accounts & Allocations ratio (F/B). This note provides a for ing arithmetic intensity using Intel's Software Development
» Computational Systems Emulator Toolkit (SDE) and VTune Amplifier (VTune) tools. A tutorial on using SDE on Edison can be found here, and a tutorial

on using VTune can be found here. This method can also be used to determine arithmetic intensity for use in the Roofline
» Storage & File Systems

Performance Model.
» Application Performance

NESAP Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B
[] Application Porting and calculation. Some modern processors such as Intel's vy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not
Refm= provide counters for FLOPs. However, Intel's SDE can be used to count floating-point instructions in addition to core-level

nersc.gov

Login

Site Map | My NERSC | < Share

search...

Powering Scientific Discovery Since 1974

HOME ~ ABOUT SCIENCEATNERSC ~ SYSTEMS WUIL{NINM NEWSGPUBLICATIONS R&D EVENTS LIVESTATUS TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intensity

IXPUG memory accesses, and VTune can be used to count data accesses to the uncore (off-chip DRAM DIMMs).
Performance and Debugging

Tools

‘The SDE dynamic instruction tracing capability, and in particular the mix histogram tool, captures dynamic instructions executed,

m_";'ﬂ Arithmetic instruction length, instruction category and ISA extension grouping. Intel has developed a methodology for calculating FLOPs
with SDE. In general the following uses the method *lInstructions to Count Unmasked FLOP" from Intel, which is applicable for
Data & Analytics

Edison and Cori Phase 1.

Job Logs & Statistics.
Training & Tutorials This application note provides additional instruction on how to only capture traces around certain key segments of a code. This is
Software critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space if tracing is enabled for
) Policies more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.
ccurate measurement o Oop S dan e
NERSC Users Group An example command line for SDE is:
Help

Staff Blogs ! § srun -n 4 -c 6 sde -ivb -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -

DRAM data movement (HSW and KNL

o -ivb s used to target Edison's vy Bridge ISA (use -hsw for Cori's Haswell processors)

« -d specifies to only collect dynamic profile information

o -iform 1 turns on compute ISA iform mix

Used by NESAP (NERSC KNL a pplication et e
readiness project) to characterize apps on Cori...

An example command line for VTune is:

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL's Computational Research Division cerreed ||||
NESAP is NERSC’s KNL application readiness project 15

LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) SERIEREVEAS

>

Evaluation of LIKWID

= LIKWID provides easy to use wrappers AMReX Application Characterization
for measuring performance counters... o =
v" Works on NERSC production systems R " —~Rooflne |
v Minimal overhead (<1%) é >0
v Scalable in distributed memory (MPI-friendly) s
v Fast, high-level characterization é o4
x No detailed timing breakdown or optimization advice @ 32
X Limited by quality of hardware performance counter 16
implementation (garbage in/garbage out) M EE.
> Useful tool that complements other SRR RN RN
tools gg“v:>v§;;
T T £ S o

https://github.com/RRZE-HPC/likwid .
16 il

BERKELEY LAB

* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function) :
v" Computes FLOPS and Al for each T ST oL s

rarha hlarkina ate

funCtiOn (CARM) h e B -7 @ Start Survey Analysis |[v| & @

Welcome | €000 X Start Survey Analysis
Start Trip Counts and FLOP Analysis
I [o8 ,
/ AVX-5 1 2 S u p po rt th at I n CO rpo rates m aS kS FILTER:E; Start Memory Access Patterns Analysis Threads v|| Loads an
mmary N Start Dependencies Analysis
= 1 B © Suver & Start Suitability Alnalysis |) / A
v Integrated Cache Simulator B perormance ooty T2 -~ | O use sl readed oot ©
1000 —— o aia ; e veon ros roan A
100 - ORI BRekk:
. . . . ’ | 00@® o g e
(hierarchical roofline / multiple Al’s) 4] . *
0.14
0.01- ; . : ; ~ v , ,
. 0001 001 0.1 1 10 100 1000 10000 10e+5 1
v Automatically benchmarks target system | setvnete e
(CaIC a es Ce . N S [Source ITopDown I Code Analytics | Assemnbly |9Recommendations & Why No Vectorization?
ulat ilings)
Add Lii A bl Total Ti % Self Ti
. [function 0x41roe7s<jo B Block 1: 146029716 . E o
v Full integration with existing Advisor bl o G G
0x4107d4 492 sub $0x210, %rsp

capabilities
http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

Technology Preview, not in official product roadmap so far.

= A
. P

BERKELEY LAB

S

™ BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

%\ U.S. DEPARTMENT OF

)
.4/ ENERGY

Thank You

